KIT Career ServiceAbschlussarbeiten am KIT

On the Samplings of Gaussian Mixture

Forschungsthema/Bereich
Artificial Intelligence
Typ der Abschlussarbeit
Bachelor / Master
Startzeitpunkt
-
Bewerbungsschluss
30.06.2028
Dauer der Arbeit
4 months(BSc) - 6 months(MSc)

Beschreibung

Monte Carlo sampling uses randomness to estimate numerical results, often for integration or simulation. Deterministic sampling follows fixed rules, producing repeatable outputs. Las Vegas algorithms are randomized but always return correct results, though runtime varies. These methods differ in accuracy, reliability, and efficiency depending on the problem structure and goals. Gaussian Mixture Models (GMMs) describe complex data using multiple Gaussian distributions. Sampling methods help estimate GMM parameters via techniques like Expectation-Maximization or MCMC. Monte Carlo sampling explores probabilistic spaces effectively, while deterministic approaches ensure convergence. GMMs are valuable because they model heterogeneity, clustering, and uncertainty in a flexible probabilistic framework.

Voraussetzung

Voraussetzungen an Studierende
  • There are no hard constraints but the more programming and math you know the more you can have fun while doing the project.

Studiengangsbereiche
  • Ingenieurwissenschaften
    Informatik


Betreuung

Titel, Vorname, Name
Ali Darijani
Organisationseinheit
Computer Science(IAR/IES)
E-Mail Adresse
ali.darijani@iosb.fraunhofer.de
Link zur eigenen Homepage/Personenseite
Website

Bewerbung per E-Mail

Bewerbungsunterlagen

E-Mail Adresse für die Bewerbung
Senden Sie die oben genannten Bewerbungsunterlagen bitte per Mail an ali.darijani@iosb.fraunhofer.de


Zurück