KIT Career ServiceAbschlussarbeiten am KIT

Gaussian Mixture Compression

Forschungsthema/Bereich
Artificial Intelligence
Typ der Abschlussarbeit
Bachelor / Master
Startzeitpunkt
-
Bewerbungsschluss
30.06.2028
Dauer der Arbeit
4 months(BSc) - 6 months(MSc)

Beschreibung

Model compression for Gaussian mixture is compelling for several reasons. First, expectation maximization is non convex, often requiring multiple random restarts; compressing a well converged model preserves its hard won optimum and avoids repeated runs. Second, compression without retraining is a major advantage, delivering smaller footprints and faster inference while keeping the learned distribution intact. Third, maintaining multiple storage and compute tiers of the same model—full, medium, and ultra-light—mirrors the ChatGPT-4 and 4-mini pattern: a unified capability surface scaled for latency and cost. This process enables adaptive deployment, edge compatibility, and efficient A/B testing without duplicating training pipelines and simplifies fleet management

Voraussetzung

Voraussetzungen an Studierende
  • There are no hard constraints but the more programming and math you know the more you can have fun while doing the project.

Studiengangsbereiche
  • Ingenieurwissenschaften
    Informatik


Betreuung

Titel, Vorname, Name
Ali Darijani
Organisationseinheit
Computer Science(IAR/IES)
E-Mail Adresse
ali.darijani@iosb.fraunhofer.de
Link zur eigenen Homepage/Personenseite
Website

Bewerbung per E-Mail

Bewerbungsunterlagen

E-Mail Adresse für die Bewerbung
Senden Sie die oben genannten Bewerbungsunterlagen bitte per Mail an ali.darijani@iosb.fraunhofer.de


Zurück